Membrane Translocation of IL-33 Receptor in Ventilator Induced Lung Injury
نویسندگان
چکیده
Ventilator-induced lung injury is associated with inflammatory mechanism and causes high mortality. The objective of this study was to discover the role of IL-33 and its ST2 receptor in acute lung injury induced by mechanical ventilator (ventilator-induced lung injury; VILI). Male Wistar rats were intubated after tracheostomy and received ventilation at 10 cm H2O of inspiratory pressure (PC10) by a G5 ventilator for 4 hours. The hemodynamic and respiratory parameters were collected and analyzed. The morphological changes of lung injury were also assessed by histological H&E stain. The dynamic changes of lung injury markers such as TNF-α and IL-1β were measured in serum, bronchoalveolar lavage fluid (BALF), and lung tissue homogenization by ELISA assay. During VILI, the IL-33 profile change was detected in BALF, peripheral serum, and lung tissue by ELISA analysis. The Il-33 and ST2 expression were analyzed by immunohistochemistry staining and western blot analysis. The consequence of VILI by H&E stain showed inducing lung congestion and increasing the expression of pro-inflammatory cytokines such as TNF-α and IL-1β in the lung tissue homogenization, serum, and BALF, respectively. In addition, rats with VILI also exhibited high expression of IL-33 in lung tissues. Interestingly, the data showed that ST2L (membrane form) was highly accumulated in the membrane fraction of lung tissue in the PC10 group, but the ST2L in cytosol was dramatically decreased in the PC10 group. Conversely, the sST2 (soluble form) was slightly decreased both in the membrane and cytosol fractions in the PC10 group compared to the control group. In conclusion, these results demonstrated that ST2L translocation from the cytosol to the cell membranes of lung tissue and the down-expression of sST2 in both fractions can function as new biomarkers of VILI. Moreover, IL-33/ST2 signaling activated by mechanically responsive lung injury may potentially serve as a new therapy target.
منابع مشابه
Curcumin Mitigates Radiation-induced Lung Pneumonitis and Fibrosis in Rats
Radiation-induced lung injury is one of the most prominent factors that interfere with chest cancer radiotherapy, and poses a great threat to patients exposed to total body irradiation. Upregulation of pro-oxidant enzymes is one of the main mechanisms through which the late effects of ionizing radiation on lung injury can be exerted. Interleukin (IL)-4 and IL-13 are two important cytokines that...
متن کاملProtective effect of interleukin-36 receptor antagonist on liver injury induced by concanavalin A in mice
Objective(s): Interleukin-36 receptor antagonist (IL-36Ra) is a new member of the IL-1 family that exhibits anti-inflammatory activity in a variety of inflammatory and immune diseases. Our purpose was to determine the effect of IL-36Ra on liver injury in a mouse hepatitis model induced by concanavalin A (ConA). Materials and Methods: Mic...
متن کاملNF-κB activation in myeloid cells mediates ventilator-induced lung injury
BACKGROUND Although use of the mechanical ventilator is a life-saving intervention, excessive tidal volumes will activate NF-κB in the lung with subsequent induction of lung edema formation, neutrophil infiltration and proinflammatory cytokine/chemokine release. The roles of NF-κB and IL-6 in ventilator-induced lung injury (VILI) remain widely debated. METHODS To study the molecular mechanism...
متن کاملP120 regulates beta-catenin nuclear translocation through E-cadherin endocytosis in ventilator-induced lung injury
Mechanical stretch induces epithelial barrier dysfunction by altering the location and degradation of cellular junction proteins. p120-catenin (p120) is a cell-cell junction protein known to protect against ventilator-induced lung injury (VILI) that results from improper ventilation of patients. In this study, we sought to determine the role of p120 in VILI and its relationship with the cellula...
متن کاملInflammation and Injury Mechanical Stretch-Induced Lung Alveolar Macrophages Contributes to Activation of NLRP3 Inflammasome in
Mechanical ventilation of lungs is capable of activating the innate immune system and inducing sterile inflammatory response. The proinflammatory cytokine IL-1b is among the definitive markers for accurately identifying ventilator-induced lung inflammation. However, mechanisms of IL-1b release during mechanical ventilation are unknown. In this study, we show that cyclic stretch activates the nu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015